Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 20288, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889106

RESUMO

Carbon nanotubes (CNTs) are widely investigated for preparing polymer nanocomposites, owing to their unique mechanical properties. However, dispersing CNTs uniformly in a polymer matrix and controlling their entanglement/agglomeration are still big technical challenges to be overcome. The costs of their raw materials and production are also still high. In this work, we propose the use of CNTs grown on oil fly ash to solve these issues. The CNTs of oil fly ash were evaluated as reinforcing materials for some common thermoplastics. High-density polyethylene (HDPE) was mainly reinforced with various weight fractions of CNTs. Xylene was used as a solvent to dissolve HDPE and to uniformly disperse the CNTs. Significantly enhanced mechanical properties of HDPE reinforced at a low weight fraction of these CNTs (1-2 wt.%), mainly the tensile strength, Young's modulus, stiffness, and hardness, were observed. The tensile strength and Young's modulus were enhanced by ~20 and 38%, respectively. Moreover, the nanoindentation results were found to be in support to these findings. Polycarbonate, polypropylene, and polystyrene were also preliminarily evaluated after reinforcement with 1 wt.% CNTs. The tensile strength and Young's Modulus were increased after reinforcement with CNTs. These results demonstrate that the CNTs of the solid waste, oil fly ash, might serve as an appropriate reinforcing material for different thermoplastics polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...